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TEMPERATURE STRESSES DUE TO A HEAT SOURCE LOCATED ON ONE SIDE

OF A STRAIGHT WEDGE
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A heat source acts on one side of a straight wedge with adiabatic
boundaries, The temperature stresses are determined in terms of the
displacement potential and Airy stress function.

We will consider the quasi-gtatic plane-stress pro-
blem of the temperature stress distribution in a
straight infinite wedge x = 0, y = 0 with adiabatic
boundaries, We assume that the thermophysical prop-
erties of the material do not go beyond the limits of
elasticity and do not depend on temperature, We fur-
ther assume that external forces are not applied to the
wedge; consequently,

6,=7, =0 at ¢=0, ¢g=1I2

We will find the temperature stresses in the form of
sums,
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where ®, F are the displacement potential and Airy
function, satisfying the equations

AD = (1 +p)aT, AAF=0.

The expression for the displacement potential is writ-
ten in the form [1]
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q>=(1+p)aa§7dz+tcpl+cpo. )
4]
Here &, is an arbitrary harmonic function and &; is the
displacement potential corresponding to the initial
temperature. These functions are selected so that the
stresses are finite at zero and disappear at infinity.
If the initial temperature of the wedge is equal to
zero, then after a time t the temperature due to an
instantaneous linear heat source located at the point
(xg, 0) is equal to

T =

21‘;% fexp (—p?) + exp(— pA)].

The displacement potential is determined from (4) and
has the form

=% [Ei (—p? + Ei (—p2) — Inp?pg.

From (1)—(3) it follows that
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The stresses at the wedge boundary ¢ =0 are
o, =0,
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The stresses at the wedge boundary ¢ =II/2 are
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The Airy stress function F is found in the form [2]
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where the functions
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Uy(g) = 5 [cos 2k @ — cos (2% +-2) ¢],

Vilg)= % fcos 2k @ + cos (2k +2) @}
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satisfy the conditions

Up(0) = Up(0)=Us(T/2) =0, U, (11/2) = 1,
Vil0) =1, V,(I/2) =Vi (0) = Vi (11/2) =0.

From the boundary conditions ¢ =—a}, at ¢= 0,
¢ = 11/2 we determine the coefficients By and Dy,

Dy = — Ay oy/(2% +2) (26 +1),
By = — Ay yu/(2k + 2) (2k +1).

It is more convenient to consider the calculation
formulas in the form of a sum and a difference of
stresses,
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Here the stresses with superscript 1 are deternuned
from
B)— (1), ap = [op + (— 1k +1),
= for + (1) lk +1). o

The problem of the stress distribution if the heat
source acts during time t is similarly solved. The
temperature distribution function, the displacement
potential and the A1ry function have, respectively, the
forms -

T= Elqﬁ‘ (Bi (—p) +Ei (~ 03),
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The stress equations (8)—(10) remain valid for this
case too, if we set Ay =A,,
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In these problems the stresses are expressed in
terms of uniformly convergent series in powers of the
reciprocal of the Froude number. The solutions ob-
tained can also be extended to the case of plane strain,
For this purpose it is necessary to change the corres-
ponding constants and add the stress o,.

NOTATION

T is the temperature; t is the time; a, A, o are the
thermal diffusivity, thermal conductivity and coeffi-
cient of linear expansion; (x, y), (r, @) are the coor-
dinates of point in polar and rectangular coordinate
systems, for which the polar axis and center coincide
with the x axis and origin; (xo, 0) are the coordmates
of source of 1ntenS1ty q;n° = 1/4at p =n?r? p} =

= nzxg, = 2po sin® ©; p% = (r +x0 — 2rx;cos (p)n

p2=(@? +xi +2rx; cos ¢)n?; Ops Ops Tpgp aTE the

stresses in polar coordinate system; @, F are the dis-
placement potential and Airy stress function; G, u are
the modulus of elasticity and Poisson's ratio; Ei(—=x)

£ exp(—1)
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iswthe number of combinations of k elements taken m
at a time A =|—g(p)ag/lt; 4 =qg(1+p)aG/Is; 4=

a 2
= , 2.1 ____a? ;7 ==0,577 ..

dt is the integro-exponential function; CI*

. Euler constant.
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